3,621 research outputs found

    Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collision

    Get PDF
    The radiation dose received from high energy galactic cosmic rays (GCR) is a limiting factor in the design of long duration space flights and the building of lunar and martian habitats. It is of vital importance to have an accurate understanding of the interactions of GCR in order to assess the radiation environment that the astronauts will be exposed to. Although previous studies have concentrated on the strong interaction process in GCR, there are also very large effects due to electromagnetic (EM) interactions. In this report we describe our first efforts at understanding these EM production processes due to two-photon collisions. More specifically, we shall consider particle production processes in relativistic heavy ion collisions (RHICs) through two-photon exchange

    Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collisions

    Get PDF
    The effects of electromagnetic-production processes due to two-photon exchange in nucleus-nucleus collisions are discussed. Feynman diagrams for two-photon exchange are evaluated using quantum electrodynamics. The total cross section and stopping power for projectile and target nuclei of identical charge are found to be significant for heavy nuclei above a few GeV per nucleon-incident energy

    Neocortical substrates of feelings evoked with music in the ACC, insula, and somatosensory cortex

    Get PDF
    Neurobiological models of emotion focus traditionally on limbic/paralimbic regions as neural substrates of emotion generation, and insular cortex (in conjunction with isocortical anterior cingulate cortex, ACC) as the neural substrate of feelings. An emerging view, however, highlights the importance of isocortical regions beyond insula and ACC for the subjective feeling of emotions. We used music to evoke feelings of joy and fear, and multivariate pattern analysis (MVPA) to decode representations of feeling states in functional magnetic resonance (fMRI) data of n = 24 participants. Most of the brain regions providing information about feeling representations were neocortical regions. These included, in addition to granular insula and cingulate cortex, primary and secondary somatosensory cortex, premotor cortex, frontal operculum, and auditory cortex. The multivoxel activity patterns corresponding to feeling representations emerged within a few seconds, gained in strength with increasing stimulus duration, and replicated results of a hypothesis-generating decoding analysis from an independent experiment. Our results indicate that several neocortical regions (including insula, cingulate, somatosensory and premotor cortices) are important for the generation and modulation of feeling states. We propose that secondary somatosensory cortex, which covers the parietal operculum and encroaches on the posterior insula, is of particular importance for the encoding of emotion percepts, i.e., preverbal representations of subjective feeling.publishedVersio

    Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates

    Get PDF
    Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. The dialyzer mass transfer-area coefficient (KoA) for urea is an important determinant of urea removal during hemodialysis and is considered to be constant for a given dialyzer. We determined urea clearance for 22 different models of commercial hollow fiber dialyzers (N = ~5/model, total N = 107) in vitro at 37°C for three countercurrent blood (Qb) and dialysate (Qd) flow rate combinations. A standard bicarbonate dialysis solution was used in both the blood and dialysate flow pathways, and clearances were calculated from urea concentrations in the input and output flows on both the blood and dialysate sides. Urea KoA values, calculated from the mean of the blood and dialysate side clearances, varied between 520 and 1230ml/min depending on the dialyzer model, but the effect of blood and dialysate flow rate on urea KoA was similar for each. Urea KoA did not change (690 ± 160 vs. 680 ± 140 ml/min, P = NS) when Qb increased from 306 ± 7 to 459 ± 10ml/min at a nominal Qd of 500ml/min. When Qd increased from 504 ± 6 to 819 ± 8ml/min at a nominal Qb of 450ml/min, however, urea KoA increased (P < 0.001) by 14 ± 7% (range 3 to 33%, depending on the dialyzer model) to 780 ± 150ml/min. These data demonstrate that increasing nominal Qd from 500 to 800ml/min alters the mass transfer characteristics of hollow fiber hemodialyzers and results in a larger increase in urea clearance than predicted assuming a constant KoA

    Gas turbine combustor

    Get PDF
    A gas turbine engine has a combustor module including an annular combustor having a liner assembly that defines an annular combustion chamber having a length, L. The liner assembly includes a radially inner liner, a radially outer liner that circumscribes the inner liner, and a bulkhead, having a height, H1, which extends between the respective forward ends of the inner liner and the outer liner. The combustor has an exit height, H3, at the respective aft ends of the inner liner and the outer liner interior. The annular combustor has a ratio H1/H3 having a value less than or equal to 1.7. The annular combustor may also have a ration L/H3 having a value less than or equal to 6.0

    Predicting the Impact of Climate Change on Threatened Species in UK Waters

    Get PDF
    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)

    Socio-economic Impacts—Fisheries

    Get PDF
    Fishers and scientists have known for over 100 years that the status of fish stocks can be greatly influenced by prevailing climatic conditions. Based on historical sea surface temperature data, the North Sea has been identified as one of 20 ‘hot spots’ of climate change globally and projections for the next 100 years suggest that the region will continue to warm. The consequences of this rapid temperature rise are already being seen in shifts in species distribution and variability in stock recruitment. This chapter reviews current evidence for climate change effects on fisheries in the North Sea—one of the most important fishing grounds in the world—as well as available projections for North Sea fisheries in the future. Discussion focuses on biological, operational and wider market concerns, as well as on possible economic consequences. It is clear that fish communities and the fisheries that target them will be very different in 50 or 100 years’ time and that management and governance will need to adapt accordingly

    Relationship between volume status and blood pressure during chronic hemodialysis

    Get PDF
    Relationship between volume status and blood pressure during chronic hemodialysis.BackgroundThe relationship between volume status and blood pressure (BP) in chronic hemodialysis (HD) patients remains incompletely understood. Specifically, the effect of interdialytic fluid accumulation (or intradialytic fluid removal) on BP is controversial.MethodsWe determined the association of the intradialytic decrease in body weight (as an indicator of interdialytic fluid gain) and the intradialytic decrease in plasma volume (as an indicator of postdialysis volume status) with predialysis and postdialysis BP in a cross-sectional analysis of a subset of patients (N = 468) from the Hemodialysis (HEMO) Study. Fifty-five percent of patients were female, 62% were black, 43% were diabetic and 72% were prescribed antihypertensive medications. Dry weight was defined as the postdialysis body weight below which the patient developed symptomatic hypotension or muscle cramps in the absence of edema. The intradialytic decrease in plasma volume was calculated from predialysis and postdialysis total plasma protein concentrations and was expressed as a percentage of the plasma volume at the beginning of HD.ResultsPredialysis systolic and diastolic BP values were 153.1 ± 24.7 (mean ± SD) and 81.7 ± 14.8mm Hg, respectively; postdialysis systolic and diastolic BP values were 136.6 ± 22.7 and 73.9 ± 13.6mm Hg, respectively. As a result of HD, body weight was reduced by 3.1 ± 1.3kg and plasma volume was contracted by 10.1 ± 9.5%. Multiple linear regression analyses showed that eachkg reduction in body weight during HD was associated with a 2.95mm Hg (P = 0.004) and a 1.65mm Hg (P = NS) higher predialysis and postdialysis systolic BP, respectively. In contrast, each 5% greater contraction of plasma volume during HD was associated with a 1.50mm Hg (P = 0.026) and a 2.56mm Hg (P < 0.001) lower predialysis and postdialysis systolic BP, respectively. The effects of intradialytic decreases in body weight and plasma volume were greater on systolic BP than on diastolic BP.ConclusionsHD treatment generally reduces BP, and these reductions in BP are associated with intradialytic decreases in both body weight and plasma volume. The absolute predialysis and postdialysis BP levels are influenced differently by acute intradialytic decreases in body weight and acute intradialytic decreases in plasma volume; these parameters provide different information regarding volume status and may be dissociated from each other. Therefore, evaluation of volume status in chronic HD patients requires, at minimum, assessments of both interdialytic fluid accumulation (or the intradialytic decrease in body weight) and postdialysis volume overload

    The Effective Field Theory of Cosmological Large Scale Structures

    Get PDF
    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c_s^2 10^(-6) and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations \delta(k) for all the observables. As an example, we calculate the correction to the power spectrum at order \delta(k)^4. The predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k \sim 0.24 h/Mpc.Comment: v2: typos corrected, JHEP published versio
    • …
    corecore